Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study investigates residential indoor water consumption variability across 39 US cities using data from 26,441 single‐family smart water meters. Employing functional data analysis and mixed‐effects random forest, we identified distinct usage patterns across city clusters, with 13 high and 6 low water‐using cities (all in coastal California) differing significantly from 20 medium water‐using cities. Shower and toilet use were primary drivers of indoor use differences between clusters, influenced by both behavioral and fixture efficiency factors. The presence of appliances, certain household features, and weather also affect indoor water use, with varying influence on indoor water use across clusters. Our findings highlight the effectiveness of state‐level water efficiency interventions and emphasize the importance of considering both behavioral factors and appliance efficiency in conservation strategies, providing valuable insights for targeted water demand management in urban areas.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.more » « less
An official website of the United States government

Full Text Available